Number Systems

Decimal number system - base 10

deci -> 1/10

0 1 2 3 4 5 6 7 8 9 


Binary number system - base 2

0 1

0 --> off            1--> on


Octal number system - base 8

Octagon


0 1 2 3 4 5 6 7 


Hexadecimal number system - base 16



Hexagon

hexa + decimal = 6 + 10




=========================================================================

                               Convert Number Systems

=========================================================================

1) Decimal -> Binary
2) Decimal -> Octal
3) Decimal -> Hexadecimal
4) Binary -> Decimal
5) Binary -> Octal
6) Binary -> Hexadecimal
7) Octal -> Decimal
8) Octal -> Binary
9) Octal -> Hexadecimal
10) Hexadecimal -> Decimal
11) Hexadecimal -> Binary
12) Hexadecimal -> Octal

-----------------------------------------------------------------------------------------------------------------------------

1) Decimal -> Binary

There are two ways to do that, the first method is

                                                         Subtraction method


ex:- 75 to binary

The highest base 2 number less than 75 is 64





75 -> 64

75-64 =11

then the highest number less than 11 is 8




75 -> 64 + 8

11 -8 =3

the next highest number less than 3 is 2




75 -> 64 + 8 + 2

3-2 =1

So final remainder also selected.




75 -> 64 + 8 + 2 + 1

So the selected numbers we gonna put value 1 and other value for 0





The answer is 1001011 in base 2



Successive division method

ex:- 75 to binary

R =Reminder

(75/2 =37.5 the floating value multiple by division value, 2* 0.5 = 1, that's how reminder comes R =1)

75/2 =37  R 1         

37/2 =18  R 1

18/2 =9    R 0

9/2=4       R 1

4/2=2       R 0

2/2=1       R 0

1/2=1       R 1

Now write R values bottom to top

1001011  base 2


This is another method

ex:- 75 to binary

-----------------------------------------------------------------------------------------------------------------------------


2) Decimal -> Octal


ex:- 394  to octal

394/8 =49.25   49 R 2          (R= 8*0.25)

49/8= 6.125     6 R 1          (R=8*0.125)

6/8=0.75          0 R  6         (R=8*0.75)

612 base 8


Another example is using long division without a calculator

ex:- 468  to octal




-----------------------------------------------------------------------------------------------------------------------------


3) Decimal -> Hexadecimal

ex:- 479 base 10 to hexadecimal

479/16 = 29.9375   29 R 15       (R = 0.9375*16)
29/16 = 1.8125       1 R  13        (R = 0.8125*16)
1/16   = 0.0625       0 R  1

R values, 1 13 15  = 1 D F = 1DF base 16
-----------------------------------------------------------------------------------------------------------------------------


4) Binary -> Decimal

1. ex: - 1010 base 2

1       0      1      0
2^3   2^2   2^1  2^0

2^3 + 0 + 2^1 + 0

8 + 2

10  base 10

Now look a fractional  binary no

2. ex: - 1100.101 base 2

1       1      0      0   .  1       0       1
2^3  2^2  2^1  2^0  2^-1  2^-2  2^-3

8 + 4 + 0 + 0 + 1/2 + 0 + 1/8

12 + 0.5 + 0.125

12.625 base 10
-----------------------------------------------------------------------------------------------------------------------------


5) Binary -> Octal

first, we need to group by 3 digits, right to left in this binary number, because 8= 2^3.

ex:- 1111110 to octal

 1111110

0 0 1   1 1 1   1 1 0
4 2 1   4 2 1   4 2 1

   1         7         6
 
176 base 8
-----------------------------------------------------------------------------------------------------------------------------


6) Binary -> Hexadecimal

first, we need to group by 4 digits, right to left in this binary number, because 16= 2^4.

ex:- 1111011111100 to hexadecimal

0 0 0 1   1 1 1 0    1 1 1 1    1 1 0 0
8 4 2 1   8 4 2 1    8 4 2 1    8 4 2 1

    1          14            15           12
    1           E              F             C

1EFC base 16
-----------------------------------------------------------------------------------------------------------------------------


7) Octal -> Decimal

ex:- 370 base 8  to decimal

3        7     0
8^2  8^1  8^0

64*3  + 8*7 + 0

192 + 56 + 0

248 base 10
-----------------------------------------------------------------------------------------------------------------------------


8) Octal -> Binary

1. ex: 56 base 8 to binary
(4 2 1 = 2^2 2^1 2^0)

5            6

4 2 1     4 2 1

5 makes by 4 and 2
6 makes by 4 and 2
So we add value 1 for that numbers and others value for 0.

4 2 1     4 2 1

1 0 1     1 1 0

101110 base 2



2. ex: 35 base 8 to binary

3            5

4 2 1     4 2 1

0 1 1     1 0 1     * note:- If there any left-side front zero,  that is not used for the answer.

   1 1     1 0 1

11101 base 2
-----------------------------------------------------------------------------------------------------------------------------


9) Octal -> Hexadecimal


1. ex: 213 base 8 to hexadecimal

step 1-> convert this  number to binary

2              1          3

4 2 1     4 2 1    4 2 1

0 1 0     0 0 1    0 1 1
 
step  2 -> rearrange this binary number into groups by 4 digits.

0 1000  1011

* note:- If there any left-side front zero,  that is not used for the answer.

1 0 0 0    1 0 1 1
8 4 2 1    8 4 2 1
8             11

8B base 16
-----------------------------------------------------------------------------------------------------------------------------


10) Hexadecimal -> Decimal

1. ex: 23E base 16 to decimal

2           3           E
16^2     16^1     16^0

2*256 +16*3+1*14
512 + 48 +14
574 base 10


2. ex: 3B4.C8 base 16 to decimal

3          B          4     .    C           8
16^2    16^1    16^0     16^-1    16^-2

3*256 + 11*16 + 4*1+      12/16 + 8/256
768 + 176 + 4 +0.75 +0.03125
948.78125 base 10
-----------------------------------------------------------------------------------------------------------------------------


11) Hexadecimal -> Binary

1. ex: 1D29 base 16 to binary

1             D          2            9
1            13          2            9
8 4 2 1   8 4 2 1   8 4 2 1   8 4 2 1   
0 0 0 1   1 1 0 1   0 0 1 0   1 0 0 1

 1            1101     0010     1001

1110100101001 base 2
-----------------------------------------------------------------------------------------------------------------------------


12) Hexadecimal -> Octal

1. ex: 1EF base 16 to octal

1             E          F            
1            14         15            
8 4 2 1   8 4 2 1   8 4 2 1
0 0 0 1   1 1 1 0   1 1 1 1

rearrange this binary number into groups by 3 digits.

0 0 0  1 1 1   1 0 1  1 1 1  
 
left-side front zero,  that is not used for the answer

1 1 1   1 0 1  1 1 1 
4 2 1   4 2 1  4 2 1

7         5        7

757 base 8




 

Comments

Popular posts from this blog

Seedr - The fastest way to download Torrents